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Abstract

Jointly matching multiple, non-rigidly deformed 3D
shapes is a challenging, NP-hard problem. A perfect
matching is necessarily cycle-consistent: Following the
pairwise point correspondences along several shapes must
end up at the starting vertex of the original shape. Unfor-
tunately, existing quantum shape-matching methods do not
support multiple shapes and even less cycle consistency.
This paper addresses the open challenges and introduces
the first quantum-hybrid approach for 3D shape multi-
matching; in addition, it is also cycle-consistent. Its itera-
tive formulation is admissible to modern adiabatic quantum
hardware and scales linearly with the total number of input
shapes. Both these characteristics are achieved by reduc-
ing the N -shape case to a sequence of three-shape match-
ings, the derivation of which is our main technical contribu-
tion. Thanks to quantum annealing, high-quality solutions
with low energy are retrieved for the intermediate NP-
hard objectives. On benchmark datasets, the proposed ap-
proach significantly outperforms extensions to multi-shape
matching of a previous quantum-hybrid two-shape match-
ing method and is on-par with classical multi-matching
methods. Our source code is available at 4dqv.mpi-
inf.mpg.de/CCuantuMM/.

1. Introduction
Recently, there has been a growing interest in applying

quantum computers in computer vision [3, 20, 32]. Such
quantum computer vision methods rely on quantum anneal-
ing (QA) that allows to solve NP-hard quadratic uncon-
strained binary optimisation problems (QUBOs). While
having to formulate a problem as a QUBO is rather inflexi-
ble, QA is, in the future, widely expected to solve QUBOs at
speeds not achievable with classical hardware. Thus, cast-
ing a problem as a QUBO promises to outperform more un-
restricted formulations in terms of tractable problem sizes
and attainable accuracy through sheer speed.

A recent example for such a problem is shape match-
ing, where the goal is to estimate correspondences between

Figure 1. Our quantum-hybrid method matches all 100 shapes
of the FAUST collection [4] with guaranteed cycle consistency
(white arrows). Here, we visualise the matchings via texture
transfer between all shapes. Our method scales linearly in the
number of shapes. See the full figure in the supplement.

two shapes. Accurate shape matching is a core element of
many computer vision and graphics applications (i.e., tex-
ture transfer and statistical shape modelling). If non-rigid
deformations are allowed, even pairwise matching is NP-
hard, leading to a wide area of research that approximates
this problem, as a recent survey shows [15]. Matching two
shapes is one of the problems that was shown to benefit
from quantum hardware: Q-Match [39] iteratively updates
a subset of point correspondences using QA. Specifically,
its cyclic α-expansion allows to parametrise changes to per-
mutation matrices without relaxations.

The question we ask in this work is: How can we design
a multi-shape matching algorithm in the style of Q-Match
that has the same benefits? As we show in the experiments,
where we introduce several naı̈ve multi-shape extensions of
Q-Match, this is a highly non-trivial task. Despite tweaking
them, our proposed method significantly outperforms them.

If N>2 shapes have to be matched, the computational
complexity of naı̈ve exhaustive pairwise matching increases
quadratically with N , which does not scale to large N . Fur-
thermore, these pairwise matchings can easily turn out to be
inconsistent with each other, thereby violating cycle con-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. We match N shapes by iteratively matching triplets.

sistency. For example, chaining the matchings PXY from
shape X to Y and PYZ from Y to Z can give very differ-
ent correspondences between X and Z than the direct, pair-
wise matching PXZ of X and Z: PXZ ̸= PXYPYZ . (We
apply the permutation matrix PXY to the one-hot vertex in-
dex vector x ∈ X as x⊤PXY = y ∈ Y .) Thus, how can
we achieve cycle consistency by design? A simple solution
would be to match a few pairs in the collection to create a
spanning tree covering all shapes and infer the remaining
correspondences by chaining along the tree. Despite a high
accuracy of methods for matching two shapes, this corre-
spondence aggregation policy is prone to error accumula-
tion [36]. A special case of this policy is pairwise matching
against a single anchor shape, which also guarantees cycle-
consistent solutions by construction [19]. We build on this
last option in our method as it avoids error accumulation.

This paper, in contrast to purely classical methods, lever-
ages the advantages of quantum computing for multi-shape
matching and introduces a new method for simultaneous
alignment of multiple meshes with guaranteed cycle con-
sistency; see Fig. 1. It makes a significant step forward
compared to Q-Match and other methods utilising adiabatic
quantum computing (AQC), the basis for QA. Our cycle-
consistent quantum-hybrid multi-shape matching (CCuan-
tuMM; pronounced “quantum”) approach relies on the
computational power of modern quantum hardware. Thus,
our main challenge lies in casting our problem in QUBO
form, which is necessary for compatibility with AQC. To
that end, two design choices are crucial: (1) Our method
reduces the N -shapes case to a series of three-shape match-
ings; see Fig. 2. Thus, CCuantuMM is iterative and hy-
brid, i.e., it alternates in every iteration between preparing
a QUBO problem on the CPU and sampling a QUBO so-
lution on the AQC. (2) It discards negligible higher-order
terms, which makes mapping the three-shape objective to
quantum hardware possible. In summary, the core technical
contributions of this paper are as follows:

• CCuantuMM, i.e., a new quantum-hybrid method for
shape multi-matching relying on cyclic α-expansion.
CCuantuMM produces cycle-consistent matchings and

scales linearly with the number of shapes N .
• A new formulation of the optimisation objective for the

three-shapes case that is mappable to modern QA.
• A new policy in shape multi-matching to address the
N -shape case relying on a three-shapes formulation
and adaptive choice of an anchor shape.

Our experiments show that CCuantuMM significantly
outperforms several variants of the previous quantum-
hybrid method Q-Match [39]. It is even competitive with
several non-learning-based classical state-of-the-art shape
methods [19, 33] and can match more shapes than them. In
a broader sense, this paper demonstrates the very high po-
tential of applying (currently available and future) quantum
hardware in computer vision.

2. Related Work
Quantum Computer Vision (QCV). Several algorithms
for computer vision relying on quantum hardware were pro-
posed over the last three years for such problems as shape
matching [20, 32, 39], object tracking [29, 44], fundamental
matrix estimation, point triangulation [17] and motion seg-
mentation [1], among others. The majority of them address
various types of alignment problems, i.e., transformation es-
timation [20,32], point set [20,34] and mesh alignment [39],
graph matching [3,38] and permutation synchronisation [3].

Only one of them, QSync [3], can operate on more than
two inputs and ensure cycle consistency for the underlying
matchings. In contrast to QSync, we can align inputs with
substantially larger (by two orders of magnitude) shapes in
the number of vertices. Furthermore, we address a different
problem, i.e., mesh alignment, for which an algorithm for
two-mesh alignment with the help of AQC exists, namely
Q-Match [39], as we discuss in the introduction.

To maintain the valid structure of permutation matrices,
Quantum Graph Matching, QGM [38] and Q-Sync [3] im-
pose linear constraints. However, this requires that the cor-
responding penalty parameter is carefully chosen. If the pa-
rameter is chosen too big and the linear constraints are en-
forced too strongly, this severely limits QGM and Q-Sync’s
ability to handle large sets of vertices. On the other hand,
if the linear constraints are enforced too weakly, there is no
guarantee to obtain valid permutations as solutions. As dis-
cussed in the introduction, our approach follows Q-Match
to ensure valid permutation matrices by construction.
Multi-Shape Matching. We focus this section on multi-
shape and non-learning methods as CCuantuMM falls in
this category. As our approach is not learning-based, it
trivially generalises to unknown object categories without
a need for training data. For a general survey of recent ad-
vances in shape matching, see Sahillioglu [37].

Matching shape pairs is a classical problem in geome-
try processing [33]. When more than two shapes of the
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same class exist, stronger geometric cues can be leveraged
to improve results by matching all of them simultaneously.
Unfortunately, the already very high problem complexity
increases even further the more shapes are used. Hence,
existing multi-shape matching methods limit the total num-
ber of shapes and their resolution [11, 19], work in spectral
space [23], or relax the permutation constraints [25]. Early
multi-matching methods computed pair-wise matchings and
subsequently used permutation synchronisation to establish
cycle consistency [30, 35, 40]. Still, permutation synchro-
nisation requires the eigendecomposition of a matrix with
quadratically increasing dimensions [35].

HiPPI [2] is a computationally efficient method that
takes geometric relations into account while generalis-
ing permutation synchronization but is still limited in
resolution. Instead of looking at permutations directly,
ZoomOut [33] reduces the dimensionality of the problem
by projecting it onto the spectral decomposition. This idea
has been extended to take cycle consistency within the spec-
tral space into account [22], which does not guarantee a
point-wise consistent matching. To circumvent this issue,
IsoMuSh [19] jointly optimises point and functional corre-
spondences. The method detangles the optimisation into
smaller subproblems by using a so-called universe shape
that all shapes are mapped to instead of each other, as Cao
and Bernard do [10]. Using a universe is similar to requir-
ing a template shape, as many learning-based approaches
do [16, 21, 41]: Both synchronise all correspondences by
matching them through a unified space. This is similar to
the concept of anchor shape we use but inherently less flex-
ible because the universe size or template have to be given
a priori. Our anchor is chosen from the given collection
as part of the method. Although using an anchor slightly
improves our results, we note that our method does not nec-
essarily require one for operation. Hence, a random shape
could be picked instead in each iteration without an increase
in complexity if using an anchor is not feasible or does not
represent the shape collection well.

3. Background

3.1. Adiabatic Quantum Computing (AQC)

AQC is a model of computation that leverages quan-
tum effects to obtain high-quality solutions to the NP-hard
problem class of Quadratic Unconstrained Binary Optimi-
sation (QUBO) problems: minx∈{0,1}k xTQx, for k ∈ N
and a QUBO weight matrix Q ∈ Rk×k. Each entry of x
corresponds to its own logical qubit, the quantum equiva-
lent of a classical bit. The diagonal of Q consists of lin-
ear terms, while the off-diagonals are inter-qubit coupling
weights. A QUBO can be classically tackled with simu-
lated annealing (SA) [42] or a variety of other discrete op-
timisation techniques [18, 28], which, for large k, typically

yield only approximate solutions as QUBOs are in general
NP-hard. AQC holds the potential to systematically out-
perform classical approaches such as SA, see [14,27] for an
example. AQC exploits the adiabatic theorem of quantum
mechanics [5]: If, when starting from an equal superposi-
tion state of the qubits (where all solutions {0, 1}k have the
same probability of being measured) and imposing external
influences corresponding to the QUBO matrix on the qubits
sufficiently slowly (called annealing), they will end up in a
quantum state that, when measured, yields a minimizer x of
the QUBO. Not all physical qubits on a real quantum pro-
cessing unit (QPU) can be connected (coupled) with each
other. Thus, a minor embedding of the logical-qubit graph
(defined by non-zero entries of the QUBO matrix) into the
physical-qubit graph (defined by the hardware) is required
[9]. This can lead to a chain of multiple physical qubits
representing a single logical qubit. For details of quantum
annealing on D-Wave machines, we recommend [31].

3.2. Shape Matching

The problem of finding a matching for non-rigidly de-
formed shapes having n vertices can be formulated as an
NP-hard Quadratic Assignment Problem (QAP) [8, 25]:

min
P∈Pn

pTWp, (1)

where p = vec(P ) ∈ {0, 1}n2

is a flattened permutation
matrix, and W ∈ Rn2×n2

is an energy matrix describing
how well certain pairwise properties are conserved between
two pairs of matches. If two shapes X ,Y are discretised
with n vertices each, W is often chosen as [25]:

Wx1·n+y1,x2·n+y2
= ∥dgX (x1, x2)− dgY(y1, y2)∥, (2)

where x1, x2 are vertices on X ; y1, y2 are vertices on Y; and
dgI(·, ·) is the geodesic distance on the shape I. Therefore,
Wx1·n+y1,x2·n+y2

represents how well the geodesic dis-
tance is preserved between corresponding pairs of vertices
on the two shapes. Instead of pure geodesics, Gaussian-
filtered geodesics are also a popular choice for W [43]:

gX (x1, x2) =
1

ρ
√
2π

exp

(
−1

2

(
dgX (x1, x2)

ρ

)2
)
. (3)

gI can be used to directly replace dgI in (2). A small value
of ρ focuses the energy on a local neighbourhood around the
vertex, while a large value increases the receptive field. Us-
ing Gaussian kernels in W places more emphasis on local
geometry whereas geodesics have higher values far away
from the source vertex. Thus, geodesics work well for
global alignment and Gaussians for local fine-tuning.
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3.3. Cyclic α-Expansion (CAE)

CCuantuMM represents matchings as permutation ma-
trices. In order to update them, we build on Seelbach et
al.’s CAE algorithm [39] (similar to a fusion move [24]),
which we describe here. A permutation matrix P is called
an r-cycle, if there exist r disjoint indices i1, . . . , ir such
that Piji(j+1)%r

= 1 for all j ∈ {1, . . . , r} and Pl,l = 1
for all l /∈ {i1, . . . , ir}, in which case P = (i1i2 . . . ir) is
a common notation. Two cycles, i.e. two permutation ma-
trices, are disjoint if these indices are pairwise disjoint. We
know that disjoint cycles commute, which allows us to rep-
resent any permutation P as P =

(∏k
i=1 ci

)(∏l
i=1 c̃i

)
,

where {ci}i and {c̃i}i each are sets of disjoint 2-cycles.
Given a set {ci}ki=1 of k disjoint 2-cycles, an update,

or modification, of P can therefore be parameterised as:
P (α) =

∏k
i=1 c

αi
i P, where α ∈ {0, 1}k is a binary de-

cision vector determining the update. (Note that αi in cαi
i

is an exponent, not an index.) Crucially, to make this pa-
rameterisation compatible with QUBOs, we need to make
it linear in α. To this end, CAE uses the following equality:

P (α) = P +

k∑
i=1

αi(ci − I)P. (4)

4. Our CCuantuMM Method
Previous adiabatic quantum computing methods [38,39]

can only match two shapes. We present a method for match-
ing N shapes. To ensure cycle consistency on N shapes, it
is sufficient that all triplets of shapes are matched cycle con-
sistently [22]. CCuantuMM iteratively solves three-shape
problems, which preserve cycle consistency by construc-
tion and fit on existing quantum annealers with limited re-
sources. We introduce our formulation for matching three
shapes in Sec. 4.1 and then extend it to N shapes in Sec. 4.2.

4.1. Matching Three Shapes

Consider the problem of matching three non-rigidly de-
formed shapes S = {X ,Y,Z} of n vertices each, while
preserving cycle consistency. We formulate this as an en-
ergy minimisation with respect to P = {PIJ ∈ Pn|I,J ∈
S}, the set of permutations between all pairs in S:

min
P

∑
I,J∈S;I̸=J

vec(PIJ )⊤WIJ vec(PIJ ),

s.t. PXZ = PXYPYZ ,

(5)

where WIJ ∈ Rn2×n2

is the energy matrix describing
how well certain pairwise properties are conserved between
shapes I and J (see Sec. 3.2), and PXZ = PXYPYZ en-
forces cyclic consistency. An overview of the algorithm for
three shapes is shown in Alg. 1.

4.1.1 QUBO Derivation

To perform optimisation on the quantum annealer, we need
to transform (5) into a QUBO problem. We adapt the CAE
formulation from [39] (see Sec. 3.3) and iteratively update
the permutations to decrease the value of (5). Given a set
C = {ci}ki=1 of k disjoint 2-cycles and binary decision
variables α, we can parameterise our permutation matri-
ces as PIJ (α) = PIJ +

∑k
i=1 αi(ci − I)PIJ . However,

CAE alone is not sufficient to transform (5) into a QUBO
as cyclic consistency is still missing. A simple solution
would be to encourage cyclic consistency as a quadratic soft
penalty, but then there are no guarantees on the solution. In-
stead, we enforce cyclic consistency by construction:

PXZ(α, β) = (6)

(PXY +

k∑
i=1

αi(ci − I)PXY) · (PYZ +

k∑
j=1

βj(c̃j − I)PYZ),

where {ci}i ({c̃j}j) are cycles and α (β) are decision vari-
ables for the updates to PXY (PYZ ). For brevity, we write
Ci = (ci − I)PXY and C̃j = (c̃j − I)PYZ . We explain
how we construct the cycles in Secs. 4.1.2-4.1.3. Thus, we
iteratively solve (5) via a sequence of problems of the form:

min
α,β∈{0,1}k

EXY(PXY(α)) + EYZ(PYZ(β)) + EXZ(PXZ(α, β)),

(7)

where EIJ (P,Q) = vec(P )⊤WIJ vec(Q) and
EIJ (P ) = EIJ (P, P ). While the first two terms are in
QUBO form, the third term contains cubic and bi-quadratic
terms (see the supplement for details) which are not
compatible with current quantum annealer architectures.

Higher-Order Terms. All of these higher-order terms
come from PXZ(α, β), specifically from the term H =∑

i

∑
j αiβjCiC̃j . As we only consider 2-cycles, Ci and

C̃j each have only four non-zero elements. Due to this ex-
treme sparsity, most summands of H become 0.

We could tackle these undesirable terms by decompos-
ing them into quadratic terms by using ancilla variables and
adding penalty terms [13]. This gives exact solutions for
sufficiently high weights of the penalty terms. However,
multiple reasons speak against this: (1) the QUBO matrix
is already dense (a clique) under the current formulation (as
we will see in (9)) and adding ancilla qubits scales quadrat-
ically in k, (2) adding penalties makes the problem harder
to solve, and (3) H is sparsely non-zero and in practise we
observe no drastic influence on the quality of the solution.

Alternatively, we could assume H=0. However, this
is unnecessarily strong since (1) H also contributes to
quadratic terms (E(H, ·)), and (2) higher-order terms op-
erating on the same decision variable trivially reduce to
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quadratic terms: αi · αi = αi for binary αi. We thus keep
those two types of terms and merely assume all truly cubic
and bi-quadratic terms to be zero.

Cycle-Consistent CAE. After eliminating the higher-
order terms and ignoring constants from (7), we obtain
(with the same colour coding):

min
α,β

k∑
i=1

αi

(
FXY (PXY , Ci) + FXZ(PXZ , CiPYZ)

)

+
k∑

j=1

βj

(
FYZ(PYZ , C̃j) + FXZ(PXZ , PXY C̃j)

)

+
k∑

i=1

k∑
l=1

αiαl

(
EXY (Ci, Cl) + EXZ(CiPYZ , ClPYZ)

)

+

k∑
j=1

k∑
l=1

βjβl

(
EYZ(C̃j , C̃l) + EXZ(PXY C̃j , PXY C̃l)

)

+

k∑
i=1

k∑
j=1

αiβj

(
FXZ(PXY C̃j , CiPYZ) + FXZ(Kij , PXZ)

+ FXZ(Kij , PXY C̃j) + FXZ(Kij , CiPYZ) + EXZ(Kij ,Kij)

)
,

(8)

where PXZ = PXZ(0,0) = PXYPYZ , and we use the
shorthands FIJ (A,B) = EIJ (A,B) + EIJ (B,A) and
Kij = CiC̃j . Denoting αk+j = βj for an expanded
α ∈ {0, 1}2k, (8) can be written in the form:

min
α∈{0,1}2k

α⊤W̃α. (9)

The full formula for W̃ is provided in the supplement. (9) is
finally in QUBO form and we can optimise it classically or
on real quantum hardware (see Sec. 3.1).

4.1.2 Choosing Vertices

The question of how to choose the sets of cycles
{ci}i, {c̃j}j is still open. We first choose a subset of ver-
tices using the “worst vertices” criterion introduced in [39]
based on the relative inconsistency IXY of a vertex x ∈ X
under the current permutation:

IXY(x) =
∑
w∈X

Wx·n+x⊤PXY ,w·n+w⊤PXY , (10)

where we treat the one-hot vector x⊤PXY as a vertex in-
dex on Y . A high value indicates that x is inconsistent with
many other matches under PXY and swapping it will likely
improve the matching. We denote the set of the m=2k ver-
tices with the highest IXY(·) as VX . Finally, we follow the
permutations to get VY = {x⊤PXY |x ∈ VX } ⊂ Y .

In practice, we observe a systematic improvement in the
matchings when considering all three possibilities (using
IXY , IYZ , or IXZ as the starting point). We thus use three
“sub”-iterations per iteration, one for each possibility.

ux vx

ux wx

ux tx

wxtx

vxtx

vxwx

uy vy

uy wy

uy ty

wyty

vyty

vywy

Call
X

Call
Y

uy vy

uy wy

uy ty

wyty

vyty

vywy

ux vx

ux wx

ux tx

wxtx

vxtx

vxwxC0
X

C1
X

C2
X

C2
Y

C1
Y

C0
Y

VX
ux

vx
wx

tx

VY
uy
vy

wy

ty

PXY

Figure 3. We depict the sub-iteration that starts from IXY , from
which we construct VX , then Call

X , and finally CX = {C0
X , C1

X ,
C2
X}. We also build VY from VX and construct CY analogously.

Matching each element of CX with one from CY (visualised via
matching colours) leads to three sub-sub-iterations.

Xα0 α1

ux wx

vx tx

P XY
(α
) Yβ0 β1

uy vy

wy ty

P
YZ (β)

Z
uz wz

vz tz

PXZ = PXY(α)PYZ(β)

Figure 4. We depict the sub-sub-iteration for C2
X = {(ux, vx),

(wx, tx)} and C1
Y = {(uy, wy), (vy, ty)} from Fig. 3.

4.1.3 Choosing Cycles

Given the worst vertices VX and VY of any sub-iteration,
we construct the cycles {ci}i, {c̃j}j from them. Fig. 3
visualises this process. Focusing on VX for the moment,
we want to use all possible 2-cycles Call

X = {(uv)|u, v ∈
VX , u ̸= v} in each sub-iteration. We cannot use all of
these cycles at once since they are not disjoint, as CAE re-
quires. Instead, we next construct a set CX by partitioning
Call
X into m−1 sets of cycles with each containing m/2=k

disjoint cycles. An analogous methodology is used for CY .
We now have CX and CY . Since we want to consider

each cycle of Call
X and Call

Y once, we need several “sub-sub”
iterations. Thus, we next need to pick one set of cycles
from each CX and CY for each sub-sub-iteration. There
are (m−1)2 possible pairs between elements of CX and CY .
Considering all possible pairs is redundant, does not provide
significant performance advantage, and increases the com-
putational complexity quadratically. Hence, we randomly
pair each element of CX with one element of CY (without
replacement). This leads to m−1 sub-sub-iterations, with
each one solving (9) with its respective cycles; see Fig. 4.

4.2. Matching N Shapes

In this section, we extend our model to matching a shape
collection S with N elements by iteratively matching three
shapes while still guaranteeing cycle consistency. Similar
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Algorithm 1 Hybrid Three-Shape Matching
Input: Pi,S
Output: Pi+1

1: for I ∈ {IXY , IYZ , IXZ} do ▷ sub-iterations
2: construct VX , VY , VZ (see Sec. 4.1.2)
3: construct CX , CY , CZ (see Sec. 4.1.3)
4: for l=1 to m−1 do ▷ sub-sub-iterations
5: compute W̃
6: optimise QUBO (9) ▷ quantum
7: end for
8: PXY =

∏k
i=1 c

αi
i PXY

9: PYZ =
∏k

j=1 c̃
αm+j

j PYZ
10: PXZ = PXY · PYZ
11: end for
12: return Pi+1 = {PXY , PYZ , PXZ}

to the three-shape case (5), this can be formulated as an
energy minimisation problem with respect to the set of per-
mutations P , except S now has cardinality N :

min
P

∑
I,J∈S;I≠J

EIJ (PIJ ),

s.t. PIK = PIJPJK ∀I,J ,K ∈ S.
(11)

The energy contains summands for each possible pair of
shapes. Solving all of them jointly would be computation-
ally expensive and even more complicated than (8). This is
the reason most multi-shape matching methods apply relax-
ations at this point or cannot scale to a large N . However,
the cycle-consistency constraints still only span over three
shapes; triplets are sufficient for global consistency [22].

We thus iteratively focus on a triplet X ,Y,Z ∈ S and
its set of permutations P ′ = {PXY , PXZ , PYZ}. We
could then minimise (11) over P ′, leading to a block-
coordinate descent optimisation of (11) over P . This would
make the problem tractable on current quantum hardware
since it keeps the number of decision variables limited. It
would also formally guarantee that our iterative optimisa-
tion would never increase the total energy. However, each
iteration would be linear in N due to the construction of the
QUBO matrix, preventing scaling to large N in practice.
We therefore instead restrict (11) to those terms that depend
only on permutations from P ′. This leads to the same en-
ergy as for the three-shape case (5), where the minimisation
is now over P ′. Importantly, the computational complexity
per triplet becomes independent of N , allowing to scale to
large N . While this foregoes the formal guarantee that the
total energy never increases, we crucially find that it still
only rarely increases in practice; see the supplement.

By iterating over different triples X i,Yi,Zi, we cover
the entire energy term and reduce it iteratively. Specifically,
one iteration i of the N -shape algorithm runs Alg. 1 on

P ′ = {P i
X iYi , P i

YiZi , P i
X iZi}. Here, X i ∈ S is chosen ran-

domly (we use stratified sampling to pick all shapes equally
often), the anchor Yi = A ∈ S is fixed, and Zi = X i−1. In
practice, we saw slightly better results with this scheme in-
stead of choosing the triplet randomly; see the supplement.
We note that we only need to explicitly keep track of per-
mutations into the anchor: Pi = {P i

IA}I∈S,I≠A. We then
get Pi+1 from Pi by replacing P i

X iA and P i
ZiA with their

updated versions from Alg. 1.
Initialisation. We compute an initial set of pairwise permu-
tations P init using a descriptor-based similarity of the nor-
malised heat-kernel-signatures (HKS) [7] extended by a di-
mension indicating whether a vertex lies on the left or right
side of a shape (a standard practice in the shape-matching
literature [19]). Instead of using a random shape as anchor,
the results improve when using the following shape:

A = argmin
A∈S

∑
I∈S;I̸=A

EIA(P
init
IA ), (12)

where P init
IA ∈ P init . We thus have P0 = {P init

IA }I∈S,I̸=A.
Time Complexity. Our algorithm scales linearly with the
number of shapes. Each iteration of Alg. 1 has worst-case
time complexity O(nk3), as we discuss in the supplement.
Energy Matrix Schedule. In practise, we first use pure
geodesics for a coarse matching and then Gaussian-filtered
geodesics to fine-tune. Specifically, for a shape collection
of three shapes, we use a schedule with 2T geodesics iter-
ations followed by 2T Gaussian iterations. For each addi-
tional shape in the shape collection, we add T iterations to
both schedules. We exponentially decrease the variance of
the Gaussians every N−1 iterations to ρ(i) = c2 exp(

c1
i−T )

where c1 and c2 are chosen such that the variance decreases
from 25% to 5% of the shape diameter over the iterations.
Thus, all shapes undergo one iteration with the same spe-
cific variance. We refer to the supplement for more details.

5. Experimental Evaluation
We compare against state-of-the-art multi-matching

methods with a focus on quantum methods. We consider
classical works for reference. All experiments use Python
3.9 on an Intel Core i7-8565U CPU with 8GB RAM and the
D-Wave Advantage System 4.1 (accessed via Leap 2). We
will release our code, which is accelerated using Numba.
Hyperparameters. We set T=11. We set the number of
worst vertices m to 16% of the number of vertices n.
Quantum Comparisons. The closest quantum work, Q-
Match [39], matches only two shapes. We consider two
adaptations to multi-matching: 1) Q-MatchV2-cc, similar to
our CCuantuMM, chooses an anchor and matches the other
shapes pairwise to it, implicitly enforcing cycle consis-
tency; and 2) Q-MatchV2-nc matches all pairs of shapes di-
rectly, without guaranteed cycle consistency. In both cases,
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Figure 5. PCK curves for (left) two three-shape and (right) two
ten-shape instances using QA and SA. In each plot, we denote one
instance by normal lines and the other one by dotted lines.

we use our faster implementation and adapt our energy ma-
trix schedule, which gives significantly better results.
Classical Comparisons. For reference, we also compare
against the classical, non-learning-based multi-matching
state of the art: IsoMuSh [19] and the synchronised version
of ZoomOut [33], which both guarantee vertex-wise cycle
consistency across multiple shapes.
Evaluation Metric. We evaluate the correspondences using
the Princeton benchmark protocol [26]. Given the ground-
truth correspondences P ∗

IJ for matching the shape I to J ,
the error of vertex v ∈ I under our estimated matching PIJ
is given by the normalised geodesic distance:

ev(PIJ ) =
dgJ (v⊤PIJ , v⊤P ∗

IJ )

diam(J )
, (13)

where diam(·) is the shape diameter. We plot the fraction of
errors that is below a threshold in a percentage-of-correct-
keypoints (PCK) curve, where the threshold varies along the
x-axis. As a summary metric, we also report the area-under-
the-curve (AUC) of these PCK curves.
Datasets. The FAUST dataset [4] contains real scans of
ten humans in different poses. We use the registration sub-
set with ten poses for each class and downsample to 500
vertices. TOSCA [6] has 76 shapes from eight classes of
humans and animals. We downsample to ∼1000 vertices.
SMAL [45] has scans of toy animals in arbitrary poses,
namely 41 non-isometric shapes from five classes registered
to the same template. (E.g., the felidae (cats) class con-
tains scans of lions, cats, and tigers.) We downsample to
1000 vertices. We use the same number of vertices as Iso-
MuSh [19], except that they use 1000 vertices for FAUST.

5.1. Experiments on Real Quantum Annealer

We run two three-shapes and two ten-shapes experiments
with FAUST on a real QPU. However, since our QUBO ma-
trices are dense, we effectively need to embed a clique on
the QPU. (The supplement contains a detailed analysis of
the minor embeddings and the solution quality.) Hence, we
test a reduced version of our method with 20 worst vertices
per shape (40 virtual qubits in total), as more would worsen

O
urs

Source

IsoM
uSh

Figure 6. Qualitative results on the TOSCA [6] cat class. We
colour a source shape and transfer this colouring to target shapes
via the matches estimated by our method or IsoMuSh [19].

results significantly on current hardware. To compensate
for this change, we use more iterations for the ten-shape
experiments. We use 200 anneals per QUBO, the default
annealing path, and the default annealing time of 20µs . As
standard chain strength, we choose 1.0001 times the largest
absolute value of entries in Q. Each ten-shape experiment
takes about 10 minutes of QPU time. In total, our results
took about 30 minutes of QPU time for a total of 5.5 · 104
QUBOs. QA under these settings achieves a similar per-
formance as SA under the same settings (Fig. 5). As QPU
time is expensive and since we have just shown that SA per-
forms comparably to a QPU in terms of result quality, we
perform the remaining experiments with SA under our de-
fault settings, on classical hardware. This is common prac-
tice [1, 39, 44] since SA is conceptually close to QA. For
additional results, including results on the new Zephyr hard-
ware [12], we refer to the supplement.

5.2. Comparison to Quantum and Classical SoTA

Ours Q-MatchV2-cc Q-MatchV2-nc IsoMuSh ZoomOut HKS
FAUST 0.989 0.886 0.879 0.974 0.886 0.746
TOSCA 0.967 0.932 0.940 0.952 0.864 0.742
SMAL 0.866 0.771 0.813 0.926 0.851 0.544

Table 1. AUC averaged over all classes of each dataset. For refer-
ence, we also include classical methods on the right.

FAUST. We outperform both quantum and classical prior
work, as Fig. 7a and Tab. 1 show. Because we downsample
FAUST more, IsoMuSh’s results are better in our experi-
ments than what Gao et al. [19] report.
Matching 100 Shapes. Next, we demonstrate that, unlike
IsoMuSh and ZoomOut, our approach can scale to match-
ing all 100 shapes of FAUST. Fig. 1 contains qualitative re-
sults. Tab. 2 compares the runtime of our method (using
SA) to others. Only ours and Q-MatchV2-cc scale well to
100 shapes while ZoomOut and IsoMuSh cannot.
TOSCA. Fig. 7b and Tab. 1 show that our method achieves
state-of-the-art results. While IsoMuSh’s PCK curve starts
higher (better), the AUC in Tab. 1 suggests that our method
performs better overall. Fig. 6 has qualitative examples.
SMAL. Our CCuantuMM outperforms the quantum base-
lines, both in terms of PCK (Fig. 7c) and AUC (Tab. 1).
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(b) TOSCA [6]
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(c) SMAL [45]
Figure 7. Quantitative results on all three datasets. For each dataset, we match all shapes within a class and then plot the average PCK
curve across classes. We plot classical methods with dashed lines as they are only for reference. HKS is our initialisation (see Sec. 4.2).

# Shapes Ours Q-MatchV2-cc Q-MatchV2-nc IsoMuSh ZoomOut
10 97 16 81 (4+)0.3 4

100 1137 175 ∼8000† OOM OOM

Table 2. Runtime (in min) for FAUST. IsoMuSh uses ZoomOut
for initialisation. “OOM” (out of memory): memory requirements
are infeasible. “†” denotes an estimate.
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Figure 8. We ablate (left) the usage of Gaussian kernels, and
(right) the large-scale multi-shape setting. Gaussian kernels im-
prove the results greatly. Matching more shapes improves results.

At the same time, it achieves performance on par with
ZoomOut and below IsoMuSh. SMAL is considered the
most difficult of the three datasets due to the challenging
non-isometric deformations of its shapes. All methods thus
show worse performance compared to FAUST and TOSCA.

5.3. Ablation Studies

We perform an ablation study on FAUST to analyse how
different components of our method affect the quality of the
matchings. We refer to the supplement for more ablations.
Gaussian Energy Schedule. Our schedule, which starts
with geodesics and afterwards uses Gaussians, provides a
significant performance gain over using only geodesics, un-
der the same number of iterations, see Fig 8. That is because
Gaussians better correct local errors in our approach.
Does Using More Shapes Improve Results? We analyse
what effect increasing the number of shapes N has on the
matchings’ quality. We first randomly select three shapes
and run our method on them, to obtain the baseline. Next,

we run our method again and again from scratch, each time
adding one more shape to the previously used shapes. This
isolates the effect of using more shapes from all other fac-
tors. In Fig. 8, we plot the PCK curves for the three se-
lected shapes. We repeat this experiment for several ran-
domly sampled instances. Our results show that including
more shapes improves the matchings noticeably overall.

5.4. Discussion and Limitations

Our method and all considered methods are based on
intrinsic properties like geodesic distances. Thus, without
left-right labels for initialisation, they would produce par-
tial flips for inter-class instances in FAUST and intra-class
instances in TOSCA and SMAL. For a large worst-vertices
set, contemporary quantum hardware leads to embeddings
(see Sec. 3.1) with long chains, which are unstable, degrad-
ing the result quality. Finally, while our method is currently
slower in practice than SA, it would immediately benefit
from the widely expected quantum advantage in the future.

6. Conclusion
The proposed method achieves our main goal: improv-

ing mesh alignment w.r.t. the quantum state of the art. Fur-
thermore, it is even highly competitive among classical
state-of-the-art methods. This suggests that the proposed
approach can be used as a reference for comparisons and
extensions of classical mesh-alignment works in the future.
(For such cases, classical SA is a viable alternative when
access to quantum computers is lacking.) Our results show
that ignoring certain higher-order terms still allows for high-
quality matchings, which is promising for future quantum
approaches that could use similar approximations. Finally,
unlike classical work, we designed our method within the
constraints of contemporary quantum hardware. We found
that iteratively considering shape triplets is highly effective,
perhaps even for classical methods.
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